\[\begin{eqnarray}\sum_{p\leq N}e(\alpha p);\quad e(x):=e^{2\pi i x}.\quad \quad(1)\end{eqnarray}\]
The full ternary problem was solved only in 2013 in a paper by H. Helfgott. In this post, we present the circle method and show how it can be used to resolve the ternary Golbach problem for large enough integers, assuming an estimate for the prime exponential sum $(1)$. This estimate is due to R. C. Vaughan and is based on his refined version of Vinogradov's method. In a later post, we prove this estimate, so the results here serve as an illustration of the capability of Vinogradov's method. We follow Vinogradov's book Method of Trigonometrical Sums in the Theory of Numbers, but replacing the application of Page's theorem by Siegel's theorem allows us to avoid some technicalities and improve the error terms.