In this post, we will derive the large sieve, which is one of the most classical sieves. The large sieve is quite different from combinatorial sieves, such as the sieve of Eratosthenes, Brun sieve and Selverg sieve (discussed in these posts
1,
2,
3,
4), in the sense that instead of combinatorial arguments, the large sieve stems from analytic inequalities that are not very far from harmonic analysis. Another important difference is that, as the name indicates, the large sieve is most useful when we are sifting a large proportion of the residue classes modulo primes, unlike the combinatorial sieves in which usually only a bounded amount of residue classes are sifted. The large sieve can, and will be, formulated as asserting square root cancellation in quadratic means of exponential sums, where the phase runs over rationals with denominator at most $z$, but we will also present an arithmetic version concerning the number of residue classes a set can occupy modulo each prime, given the size of the set (which is what combinatorial sieves are also about). One more formulation involves bilinear sums of Dirichlet characters, and we use it, together with Vaughan's identity (see
this post) and the Pólya-Vinogradov inequality (see
this post), to prove the
Bombieri-Vinogradov theorem. Finally, we apply the Bombieri-Vinogradov theorem to the solution of the Titchmarsh divisor problem, which asks for the average number of prime divisors of $p+a$ for a given $a$, where $p$ runs through the primes up to $x$. We follow the book
An Introduction to Sieve Methods and Their Applications by Cojocaru and Murty.