By the fundamental theorem of algebra, polynomials with complex coefficients always factor into linear factors in $\mathbb{C}[x].$ From this it follows that real polynomials factor into at most quadratic factors in $\mathbb{R}[x]$. However, in $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$, irreducibility is much more interesting. By Gauss' lemma, irreducibility in both of them is the same thing, so we consider only $\mathbb{Z}[x]$ (every polynomial in $\mathbb{Q}[x]$ becomes a polynomial with integer coefficients when multiplied by a suitable integer).
In what follows, by polynomials we mean polynomials with integer coefficients in one variable and irreducibility is considered in $\mathbb{Z}[x]$, unless otherwise noted. In this post, we present a few methods to determine whether a polynomial is irreducible. For some reason, it seems that the Eisenstein criterion is almost the only irreducibility criterion that is truly well-known, even though it fails for many polynomials.